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Synopsis

A brief, tutorial summary of recent developments in molecular dynamics simulations is given, 

with a view of their application to the interaction of energetic ions with solid substrates. In 

particular, the following topics are discussed: (i) interatomic potentials, (ii) ensembles and phase 
space sampling, and (iii) description of inelastic processes.

1 Introduction

Molecular Dynamics (MD) simulation is a widely used technique for modelling com­
plicated physical phenomena, with applications ranging from galaxy dynamics to 
protein folding. In materials science, MD simulations consist of calculating numer­
ically the trajectories of a number of interacting atoms over a given time interval. 
The technique allows one to model the complex dynamical behavior of materi­
als, provided that the relevant spatial and temporal correlations can be contained 
within the finite size and time span of the simulation. Physical properties, includ­
ing thermodynamic quantities (for an excellent treatise, see Allen and Tildesley 
1987), can then be calculated as appropriate temporal averages of the simulation 
data. Statistical analysis of the simulation sequences yields information on the 
dynamic properties of the system.

Ion-solid and ion-surface collisions, including sputtering processes, constitute 
a complicated set of problems well amenable to molecular dynamics simulation. 
In fact, a computer simulation (Gibson et al. 1960) of radiation damage induced 
by an energetic primary-knock-on atom was one of the earliest applications of 
the MD technique in materials physics. An MD study of the sputtering process 
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entails all the important and challenging ingredients of a meaningful simulation: 
atomic interactions, non-equilibrium (energy transfer) aspects, ensemble averaging, 
dissipation and boundary conditions. Below, I shall discuss current issues related to 
these from the viewpoint of sputtering. An extensive treatment of simulation of ion­
solid interactions has recently been published (Eckstein 1991). A comprehensive 
review of computer simulation of sputtering by Robinson is included in this volume 
(Robinson 1993). Recent MD simulations of sputtering have been summarized and 
compared in the round-robin study of Sigmund et al. (1989). Several groups 
are now actively applying the MD techniques to sputtering and related processes 
(Garrison et al. 1998, Hsieh and Averback 1990, Shapiro and Tombrello 1992, 
Karetta and Urbassek 1992, Wucher and Garrison 1992).

2 Atomic Interactions: The Potential Problem

Depending on the physical circumstances one wants to simulate, the number of 
atoms included in an MD study ranges from a few tens to hundreds of thousands, 
and the relevant simulation time span is from femtoseconds up to nanoseconds. 
One is faced with a compromise as regards the number of atoms, the simulation 
time, and the description of the interatomic force laws.

At high energies (small interatomic separations), the atom-atom interaction is 
dominated by the two-body (dimer) term. At lower energies, especially near the 
equilibrium, the pair potential approximation is usually totally inadequate (except 
in the case of inert gas systems): the total energy of the condensed state cannot be 
expressed as a sum over pairwise interactions. It is customary to say that there is 
a volume or density dependence in the total energy. For a simple metal such as Al, 
in fact most of the cohesive energy is in the ‘electron gas’ term due to delocalised 
conduction electrons, with only a weak dependence on structure and interatomic 
distances.

There is no well-defined rule to determine when the two-body description be­
comes invalid. In fact the proper strategy of choosing the potential depends criti­
cally on what one wants to simulate. For the most energetic atoms in the collision 
cascade, with their kinetic energies large compared to the cohesive energy, it is 
often valid throughout the relevant time span. For example, the scattering trajec­
tories of primary hyperthermal ions (energies above a few tens of eV) can be well 
calculated from pairwise summed repulsive interactions. The scattered ions mainly 
bounce off the surface. However, if one in the same situation is interested in such 
follow-on events as damage production in the substrate, many-atom interactions 
between the substrate atoms are necessary. Pairwise force laws cannot be used 
for quantitatively reliable calculations of such quantities as defect formation and
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Figure 1. Schematic presentation of the interatomic potential, with the main physical effects 

indicated for each energy region.

migration energies or, in the case of sputtering, binding energies of surface atoms.

2.1 Two-Atom Potentials

The generic form of a two-body interatomic potential is depicted in Fig. 1. First of 
all, it is important to recognize the difference between the adiabatic and diabatic 
potential. The former corresponds to the situation where, according to the Born- 
Oppenheimer principle, the electrons remain at their instantaneous ground state 
with respect to the nuclear separation. The adiabatic potential allows for charge 
transfer between the interacting atoms. In the case where the incoming ion is in 
molecular form, it also allows for its eventual dissociation. The diabatic potential 
describes the case where the collision takes place at such speed that the electrons 
have no time to adjust to the ground state, but are constrained. The diabatic 
potential energy is always higher than the adiabatic one.

Again, there is no quantitative, general rule as to which potential is the phys­
ically relevant one. It is intuitive to think that one should use the diabatic de­
scription, corresponding to the initially chosen charge states for the atoms, at high 
kinetic energies which are large compared to the electron ionisation energy or affin­
ity (velocities large compared to Bohr velocity).

Fig. 1 also shows schematically the major physical origin of the adiabatic two-
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atom interaction at various separations. The two-atom problem can be essentially 
regarded as exactly solved (numerically). The two most popular approaches to this 
problem are known as the Hartree-Fock (HF) method and density-functional theory 
(DFT) (see, for example, Jones and Gunnarsson 1989) . They only differ in the 
way they treat the electron-electron interactions. HF treats the electronic exchange 
(Pauli principle) exactly but neglects the remaining correlations. They can be 
reintroduced using sophisticated perturbation theory (configuration interaction, 
CI). DFT treats exchange and correlation on the same approximative level, usually 
within the so-called local density approximation (LDA). Except near the two-body 
attractive minimum, they give for the present purposes identical results. At the 
minimum, DFT-LDA usually leads to overbinding while HF gives underbinding. 
By increasing the sophistication of correlation treatments, both approaches can be 
pushed near ‘chemical’ accuracy, i.e. binding energies of even larger aggregates 
than dimers can be calculated to a small fraction of an eV. The proponents of both 
methods use the description ab initio for each of the techniques.

There are by now several computer programs available which provide the HF 
or DFT numerical solution. Examples of commercially supported programs are the 
Gaussian92 (trademark of Gaussian, Inc., Pittsburgh, Penn., USA), DMol (trade­
mark of Biosym, Inc., San Diego, Calif., USA) and the UniChem (trademark of 
Cray Research, Inc., Eagan, Minn., USA) program packages. Thus, for accurate 
two-atom potentials, there is no need to resort to analytic, statistical or empirical 
approximations so popular in the past literature. For example, one can evalu­
ate exactly the so-called ‘screening function’ in the high-energy region where the 
intra-nuclear Coulomb repulsion dominates.

The electronic structure programs can also be used to evaluate the diabatic 
potentials. This requires that the electronic state be constrained, for example 
to a fixed electronic configuration (charge state) for the constituents. While the 
powerful variational property is strictly valid for the ground state only, it can be 
extended to the total energies of the lowest excited states of a given symmetry.

2.2 Many-Atom Interactions

Let us now return to the general case where there are several interacting atoms 
present in the relevant region. Again, in the adiabatic case the electrons adjust 
themselves to the ground state corresponding to the given nuclear coordinates. In 
DFT, the total electron density n(r) is the key variable, the ‘glue’. The Hohenberg- 
Kohn theorem (Hohenberg and Kohn 1964) underpinning DFT guarantees that 
the total energy E is a unique functional of n(r) and that E{n(r)} is minimised 
at the ground state. This guarantees the applicability of the important and useful 
variational principle. Moreover, the interatomic forces can be exactly calculated 
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using the Hellmann-Feynman theorem.

2.2.1 First-Principles Molecular Dynamics

First-principles MD is a method where one actually solves for the electronic (ground) 
state at each time step with its nuclear coordinates, and calculates the exact forces 
as derivatives of the total energy functional with respect to nuclear coordinates. It 
sounds like a formidable task, but with clever algorithms (Car and Parrinello 1985; 
for a recent review, see Galli and Parrinello 1991) it is now possible to carry out 
this task, at least for modest-size systems near their equilibrium.

The key idea is , instead of exact solution of the electronic degrees of freedom 
(‘diagonalisation’) at each timestep for nuclear motion, to solve for all the degrees 
of freedom in unison (‘iterative diagonalisation’). This is accomplished by casting 
the problem into the form of global optimisation of the total energy functional 
in the space of both the nuclear coordinates R, and the electronic wavefunctions 

The search in the phase space is done through classical equations of motion, 
where the driving forces are the Hellmann-Feynman forces for the nuclear coor­
dinates, and the deviation from exact diagonality for the electronic amplitudes. 
An arbitrary inertia parameter (‘mass’) can be assigned the electronic equations 
of motion, and the associated fictitious kinetic energy (‘electron temperature’) can 
be adjusted to obtain optimal convergence and closeness to the Born-Oppenheimer 
surface. This process is called ‘simulated annealing’; alternative techniques can be 
preconditioned conjugate gradients (Stich et al. 1989). The real temperature is 
naturally associated to the nuclear kinetic energy, as in classical MD.

The Car-Parrinello technique is usually implemented using plane waves as the 
basis set for expanding the electronic eigenstates. This set of functions is convenient 
for dynamic simulations as its resolution is uniform, i.e. no a priori assumptions of 
the relevant atomic positions need to be made. Moreover, the plane wave expansion 
(Fourier analysis) can be made efficiently using the Fast Fourier Transform. The 
drawback is that rapidly varying electronic states cannot be described by feasible 
numbers of Fourier terms. The technique is thus usually coupled to the pseudopo­
tential method (Heine and Weaire 1970, Bachelet et al. 1982), where the electronic 
core states are projected (‘pseudized’) out. This seriously hampers its usefulness 
for atoms with deep pseudopotentials such as transition and noble metals with d- 
like electrons. There have recently been suggestions (Vanderbilt 1990, Laasonen et 
al. 1991) on how to define ‘ultrasoft’ pseudopotentials for these materials to make 
them feasible for plane wave -based methods.

Even with the pseudopotential method, the Car-Parrinello technique is compu­
tationally heavy, requiring thousands of plane waves for each eigenstate and thus 
a huge number of degrees of freedom to be optimised. Thus far most of its im- 
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piementations have been restricted to a few tens of atoms moving gently near the 
equilibrium. Its most spectacular successes have been with obtaining true ground 
state geometries and energies in complicated low-symmetry situations, such as the 
(7x7) reconstruction on the Si(lll) surface (Stich et al. 1992, Brommer et al. 
1992) . A few studies of true dynamics, such as diffusion processes and phonon 
densities of states have been reported (Galli et al. 1989, Buda et al. 1989) . How­
ever, with advances in large-scale computing, such as massively parallel processing, 
one can expect significant advances in near future. A low-energy sputtering process 
involves a fairly small number of atoms. If the relevant time span (bond breaking, 
atomic transport) is not too long (say, 1 psec) one can imagine attacking sputtering 
with first-principles MD soon.

2.2.2 Tight-Binding Molecular Dynamics

Significant savings in computing requirements can be obtained with simplified de­
scriptions of the electronic total energy. The tight-binding (TB) Hamiltonian (see, 
for example, Harrison 1980) is a well-tested approximation for several condensed 
matter systems. It retains the quantum-mechanical nature of the electronic ki­
netic energy, but replaces the electron-ion and electron-electron interactions with 
a simple operator. The electronic states are represented in terms of a small set of 
localised basis functions, which leads to a much less heavy diagonalisation problem. 
The number of atoms in TB-MD can be an order of magnitude larger than in a 
comparable Car-Parrinello simulation. The TB-MD technique has recently been 
applied for several problems in semiconductor physics (Laasonen and Nieminen 
1990, Virkkunen et al. 1991, Wang et al. 1991).

2.2.3 Approximate Many-Atom Energy Functionals

A major simplification of MD results from making the approach totally classical. 
The overwhelming majority of MD work to date falls into this category. I have 
already stressed the fact that two-body classical potentials cannot be expected to 
work in general. Another demonstration of this comes from exact calculations for 
total energies of ordered atomic structures with different symmetries and coordi­
nation numbers (Goodwin et al. 1990). The obtained formation energies show a 
strong nonlinearity as a function of coordination number, while a pairwise inter­
action model should give a straight line. In fact, the curvature seems to follow a 
square-root behavior obtained from a simple tight-binding model.

Another way of looking at the many-atom interactions is to estimate the energy 
by building, atom by atom, the aggregate of the desired structure. For example, one 
can estimate the cohesive energy by ‘embedding’ an atom to an existing vacancy 
in the medium. The vacancy contains some electron density from the neighboring 
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atoms. To a first guess, the embedding energy can be approximated by the energy 
required to immerse the atom into an electron gas (Puska et al. 1981) with that 
average density. This energy has a nonlinear dependence on the total density, 
and thus cannot be reduced back to a superposition of pairwise terms from the 
individual atoms.

The above is the physical motivation to a class of classical many-atom energy 
functionals. These include the Effective-Medium Theory (EMT (Jacobsen et al. 
1987); the Embedded Atom Model (EAM) (Daw and Baskes 1983, 1984); the 
Finnis-Sinclair-potential and its extensions (Finnis and Sinclair 1984, Ackland et 
al. 1987); and the Glue Model (Ercolessi et al. 1986, 1988). In all of these, one 
can write the total energy in the generic form

Etot ~ ^(n») + 2 w — + ^bs- (1)

i i,j

Above, F is a (nonlinear) function of the electron density at the site of atom 
2, arising from the neighboring atoms interacting with it. This term contains the 
density or volume dependence of the total energy, it depends on the coordination 
number but is less sensitive to the structure. The second term is a (pairwise) 
summation of potentials ip of electrostatic origin. This term also contains the 
short range core repulsion necessary to stabilise the structure. The third term is a 
correction term, in some formulations associated with the single-particle eigenvalues 
(the band-structure energy).

The many-atom descriptions of the form sketched in Eq. (1) were first devel­
oped for close-packed fee crystals, and contained nearest-neighbor interactions only. 
They have subsequently been made more general in the sense that other crystal 
symmetries have been included, and that interactions beyond nearest neighbors 
have been included (Häkkinen and Manninen 1989). The latter feature is of course 
necessary in order for the model to distinguish between hep and fee structures and 
to calculate stacking fault energies. For recent summaries, see Jacobsen’s review 
(Jacobsen 1988) for the EMT model and Baskes’ article (Baskes 1993) for the EAM 
model.

Many-atom potentials can also be derived through perturbation theory, based 
for example on the idea of pseudopotentials and dielectric screening (Moriarty 
1982). Summaries of all the recent ideas and results for many-atom interactions 
have been published in two workshop proceedings (Nieminen et al. 1990, Haydock 
et al. 1991).
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2.3 Empirical Many-Atom Potentials

For directionally bonded materials such as tetrahedrally coordinated solids, several 
classical, empirically motivated many-atom potential models have been proposed. 
Famous examples include the Stillinger-Weber potential for Si (Stillinger and We­
ber 1985), the carbon potentials suggested by Tersoff (Tersoff 1989) as well as 
several models suggested for hydrogen-bonded substances such as water (Schweizer 
and Stillinger 1984). Their utility in MD simulations for ground state properties 
varies. In general, one should be aware of the limited general applicability of em­
pirically determined potentials outside the particular set of properties used to fit 
their parameters: it is sometimes difficult to ‘cheat’ quantum mechanics.

One final remark on the atomic force laws is in order. In sputtering simulations, 
considerable attention has been paid to modelling of the substrate surface. This is 
natural, as the ejection energy and angular distribution of the sputtered particles 
depend on the surface geometry and energetics. A proper MD model should contain 
the surface structure and binding inherently, without any extra assumptions or 
explicitly introduced surface potentials.

3 Ensembles and Phase-Space Sampling

The traditional and simplest way of performing MD simulations is to use the mi- 
crocanonical (constant-NVE) ensemble, i.e. to solve the equations of motion for a 
fixed number of atoms in constant volume and with conserved total energy. Ex­
tended systems are simulated by using periodic boundary conditions in one or more 
dimensions. The standard algorithm for the numerical solution of the equations of 
motion is the velocity-Verlet method in one of its disguises. The technical issues of 
MD simulation have been presented in several texts (Heermann 1986).

3.1 Constant-Pressure and Constant-Temperature Simula­
tions

In many cases, the microcanonical ensemble is not, however, the physically correct 
one to perform the simulations in. The MD method can be extended to other en­
sembles. The constant-NpH simulation corresponds to the case where the pressure 
p and enthalpy H are conserved, and the cell volume can change dynamically. The 
relevant equations of motion were first presented by Andersen (Andersen 1980), 
and can be efficiently implemented for MD simulations. Nosé and Klein (Nosé and 
Klein 1983) developed an extension to the canonical (constant-NVT) ensemble, 
where the temperature T is kept constant. The standard implementation of this 
method nowadays involves the equation of motion for the so-called Nosé-Hoover 
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(Hoover 1985) thermostat.
The physically most appealing ensemble is one where both pressure p and 

temperature T are the pre-chosen thermodynamical variables. Nosé (Nosé 1984a, 
1984b) presented the extension to the constant-NpT case. Unfortunately, the set 
of equations of motion becomes rather cumbersome in this case, and the method 
has not yet been extensively applied in practical simulations.

3.2 Constrained Molecular Dynamics

An often occurring situation in MD simulations is that one wants to impose con­
straints on a given subset of degrees of freedom. For example, in a simulation for 
a molecular system it may make sense to keep the bond lengths fixed, but allow 
the positions of molecules and their angular orientations to evolve freely under the 
intermolecular and intramolecular forces. An especially useful technique to treat 
holonomie constraints has been presented (Ryckaert et al. 1977) . This constraint 
dynamics approach uses a set of Lagrange multipliers to represent the forces re­
quired to keep the desired distances (or angles) constant. The constraint forces 
are updated at each timestep and are correct to the same order of accuracy as the 
integration algorithm.

3.3 Heating and Boundary Effects in Sputtering Simulations

Also in sputtering simulations, the choice of the ensemble is of some importance. 
For short-time collision dynamics and ejection processes, the microcanonical en­
semble seems the obvious choice. However, for longer time scale effects such as 
structural relaxation, damage production and annealing, and eventual equilibra­
tion, other ensembles are more appropriate. For example, swelling and eventual 
blistering of the sputtered surface requires volume relaxation, i.e. the constant­
pressure ensemble.

The incident ion deposits kinetic energy into the substrate. While some of this 
energy is dissipated to the electronic degrees of freedom (see Ch. 4 below), the 
temperature (the ion kinetic energy), in the substrate rises. In MD simulations 
with accumulating dose, this eventually leads to unphysical heating of the sample. 
Moreover, if periodic boundary conditions are used, the hot and damaged region 
has periodic images throughout the surface.

A possible way to avoid unphysical heating is to embed the simulation unit cell 
into an unperturbed and cool substrate. This can be accomplished by defining a 
‘skin’ region for the unit cell where the ion velocities are repeatedly scaled so that its 
mean temperature corresponds to the desired bulk temperature. The ion positions 
at the cell boundary can be fixed at their unperturbed values. This technique 
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corresponds to the presence of a heat bath which ‘dissolves’ the deposited kinetic 
energy, and corresponds to rapid heat diffusion out of the sputtered region in a real 
physical system. However, care should be taken to choose the simulation conditions 
such that no spurious effects are introduced, for example by reflection (Laakkonen 
and Nieminen 1990) of the heat pulse due to the cascade off the skin. It is advisable 
to carefully test the simulation setup for the size of the unit cell and the cooling 
strategy so that they do not affect the phenomena from which one is gathering 
statistical information through the simulation.

Another possibility for introducing heat bath effects is to augment the deter­
ministic MD equations with Langevin-type viscous forces affecting the atoms near 
the cell boundary (Tully 1980). The friction coeffients can be adjusted so as to 
mimic the desired heat dissipation into the substrate.

3.4 Free-Energy Simulations

MD simulations can also be used to obtain entropie contributions, e.g. free energies. 
The standard simulation produces a trajectory in the phase space, corresponding 
to a fixed total or kinetic energy for the Hamiltonian H. A direct evaluation of 
the Helmholtz free energy F would require the computation of a configurational 
integral, which is very hard due to the rapidly varying integrand. A practical free 
energy calculation can be based on the idea of coupling constant integration (Squire 
and Hoover 1969) . One chooses as a reference Hamiltonian Ho one for which the 
free energy Fo is known e.g. the ideal gas or the harmonic solid. Then the free 
energy for the real system is

where H(A) = + F(A) so that A = 0 corresponds to the reference system while
A = 1 corresponds to the real system. The brackets denote the thermodynamic 
(canonical) average. By performing a series of MD simulations for selected values 
of the coupling constant A, one can estimate the free energy.

3.5 Hybrid Monte Carlo -Molecular Dynamics

A fundamental limitation of the MD technique is the explicit dependence of the 
calculated sequences and averages on the chosen time step. On the one hand, this 
implies the possibility of numerical instabilities for the algorithm. On the other 
hand, for canonical simulations the MD technique can be extremely inefficient in 
the sampling of the phase space (long simulations are very costly). Monte Carlo 
(MC) methods in statistical physics are based on a stochastic process, where atom 
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positions are updated randomly and the new configurations are accepted using the 
Metropolis criterion. Even if the updates are usually done locally, the canonical 
minimum can be found effectively, except near phase transitions where critical 
slowing down renders the algorithm very slow. The other obvious drawback of the 
MC method is that there is not a real ‘clock’ in the system, i.e. no quantitative 
dynamics can be obtained.

The hybrid MC-MD algorithm (Mehlig et al. 1992) is one which combines some 
of the appealing features of both methods. Like in MD, one generates new con­
figurations through a deterministic algorithm (equations of motion). However, the 
timestep can be chosen large so that truncation errors introduce a nonconserva­
tion of the total energy. After a while, the new configuration (with a new total 
energy) is checked using the standard Metropolis criterion. If the algorithm for the 
equations of motion is time reversible and preserves the phase space volume, one 
can show that the canonical distribution is obtained. The algorithm is effective as 
most of the updates are global (as in MD), yet large drifts in the internal energy 
are possible. Even if the interpretation of real time is not clear in this method, it 
seems to provide an interesting alternative for MD simulations requiring very long 
time scales.

4 Non-Equilibrium MD: Electronic Cooling

Energetic ions transfer energy to the electronic subsystem as well. The phenomenon 
of electronic stopping is important and much studied in ion implantation. Elec­
tronic excitations can lead to direct desorption of surface atoms (‘electronic sput­
tering’) (Avouris et al. 1987) , which can simply be thought as being due to the 
transfer between the adiabatic and diabatic potential energy curves, induced by 
the incoming ion. In collisional sputtering, ion-electron energy transfer shows up 
in two ways. Firstly, the trajectory and the range of the primary ion is affected by 
the inelastic losses to electrons. Secondly, the kinetic energy of the substrate atoms 
having undergone collisions decreases. The latter is particularly important in such 
cases where dense ‘thermal spikes’ are formed near the end of the cascade. The 
spike can cool much faster if the energy-loss channel to electrons is open. The faster 
cooling rate has an effect on such phenomena as defect production and mixing, and 
can also affect sputtering.

Quantitative theories of electronic cooling of collision cascades have recently 
been presented. The key ingredient in these theories is the energy loss rate for a 
swift ion, a problem first discussed by Bohr (Bohr 1913), Fermi and Teller (Fermi 
and Teller 1947), Lindhard (Lindhard 1954) and subsequently dealt with by several 
investigators. In the case where the ion is traversing an electron-gas-like metal with 
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a velocity small compared to the electron Fermi velocity, one can rigorously show 
that the stopping power (energy loss per unit distance) is proportional to the ion 
velocity:

_^!ï = Q(Zin)y^-. (3)
dx

The proportionality constant a(Z, n) can be related to the scattering cross section 
of Fermi surface electrons off a stationary ion, a quantity which can be calculated 
exactly using density-functional theory (Puska 1990). It is important to realise that 
o(Z, n) depends in a nonlinear fashion on both the ion nuclear charge Z and the 
electron density n. Note that the same or closely related constant appears in such 
diverse physical quantities as impurity resistivity, vibrational lifetimes, electron­
phonon coupling and spin-lattice relaxation time.

Calculated values for the ‘friction parameter’ q(Z, n) have been tabulated by 
Puska and Nieminen (Puska and Nieminen 1982) . The electronic friction can 
(and should) be implemented in sputtering MD simulations by simply adding a 
velocity-dependent damping term to the equations of motion.

A problem closely related to the electronic stopping power is the energy transfer 
rate from a collection of mobile atoms to electronic (single-particle) excitations. Let 
us consider the ionic motion as being described by the dynamic structure factor 
S(q, u>) for fluctuations. This can include both single-ion motion and collective 
(phonon-like) excitations. Using the Fermi Golden Rule, one can write the energy 

ionic and electronic systems as (see, for example,

duj 2) hwö(Ek — Sk' — ^) |Tq |2 •
k,k'

[/k(l - /k')S(q,w) - /k'(l - /k)S(-q, -w)], (4)

where one has assumed a monovalent metal for simplicity. Above, Ek denotes the 
electron single-particle energy with wavevector fc, and is the Fermi distribution 
function. By interpreting Tq as the t-matrix for electron-ion scattering, the nonlin­
ear screening effects are included in Eq. (4) and it can therefore be made consistent 
with Eq. (3).

Stoneham (1990) has recently reviewed the consecpiences of electron-ion cou­
pling for collision cascades in solids. Based on the ideas of Flynn and Averback 
(1988), Finnis et al. (1991) have recently made a quantitative study of the thermal 
excitation of electrons in energetic displacement cascades. Using both a continuum 
(diffusion) model for the cascade and an MD simulation with explicit friction forces 
derived from a thermal model, they showed that electron-phonon coupling has a 
pronounced effect on cascade cooling. For example, the 2-keV cascade quenches 

exchange rate U between the 
Koponen 1992)
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much faster in Ni than Cu, basically due to the much higher density of electronic 
states near the Fermi level. Koponen and Hautala (1993) have carried out related 
studies of the effect of electronic cooling on ion-beam-induced mixing.

Caro and Victoria (1989) have described a similar scheme of adding a velocity­
dependent damping term to the equations of motion. They suggest an empirical 
interpolation formula, based on the local electron density encountered by the mov­
ing ion, for obtaining the energy-dependent electron-ion coupling throughout the 
whole cascade history. In effect it interpolates between the ‘stopping region1 (Eq. 
(3) and ‘thermal region’ (Eq. (4)).

The experimental verification of the electronic effects in collision cascades is still 
controversial, and the quantitative importance of the ion-electron energy exchange 
is not settled. The effects manifest themselves indirectly in defect product rates, 
defect mobility and short-term annealing. It would be highly desirable to devise 
novel experiments to establish the electronic cooling effect unambiguously.

Recently, the inverse process where energy is transferred from the electronic 
subsystem to the ions, has been investigated. This is accomplished experimentally 
by picosecond laser-pulse irradiation of metallic surfaces (Herman & Elsayed-Ali, 
1992). Häkkinen & Landman (1993) have carried out MD simulations of the as­
sociated superheating, melting, and annealing for Cu surfaces, using the methods 
outlined above.

5 Algorithms and Implementation

MD simulations are typically at the forefront of computational physics. Ambitious 
projects require supercomputer resources. The computational cost of classical MD 
with short-range forces scales linearly with the number of particles N. (Long-range 
Coulomb forces require special Ewald summation techniques). The time-step St for 
numerical solution should be chosen so that the most energetic ions do not move 
too much (compared to typical atom distances) during St. In practical sputtering 
simulations, St is in the average of the order of 10“15 s. Let us assume that one 
needs 100 floating-point operations per atom and time-step to calculate forces and 
update the position and velocity. A modern vector supercomputer processor can 
execute up to the order of 109 floating-point operations per second. This implies 
that one can simulate 10“8/N real-time seconds for every computer-second. For a 
unit cell of 103 atoms, this means that each computer second corresponds to 10 ps 
of real time. Assuming that one needs 100 simulation histories to get acceptable 
statistics, the cost for simulating a 1 nsec real-time physical process is of the order 
of 3 CPU-hours on a supercomputer.

For first-principles MD, the numbers are much worse. First of all, the time step 
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is determined by the quantum resolution and is typically around 10~16 s, a factor of 
10 shorter than in the classical case. The ionic (classical) part scales as discussed 
above, but the electronic part is much more costly. The computational cost is 
for large systems proportional to N3. This arises from the need to orthogonalise 
the wavefunctions. Moreover, the proportionality constant can be very large as it 
depends on the number of basis functions M required to represent each (occupied) 
eigenstate. (The iterative Car-Parrinello technique saves one from explicit full 
matrix construction and diagonalisation. The Fast Fourier Transform takes of the 
order of M In M operations to go between the real and reciprocal space.) The 
numbers add up such that even with a 10y-flop/s supercomputer one is limited 
to around 100 atoms, and that one computer-second translates to roughly one 
timestep.

Parallelisation of MD computing, both classical and quantum, is an area of 
active research and development. It is natural to think that since the physics in 
Nature takes places in parallel, one should be able to write such algorithms and 
programs which can effectively utilise the architecture of a (massively) parallel 
supercomputer. Early experiences show considerable promise that within the next 
few years one can widen the scale of MD simulations by an order of magnitude. 
This will bring more dynamic phenomena within the reach of first-principles MD 
simulation.

6 Conclusions

MD simulation techniques have progressed in a spectacular way during the last 
decade. The sophistication and accuracy of representing atomic interactions has 
reached a level, where structural, thermodynamic, and energetic properties can be 
reproduced and predicted reliably. It is also possible to investigate (with classical 
force laws) dynamic phenomena over time scales in tens of nanoseconds.

MD is basically a deterministic simulation technique, whereby thermodynamic 
ensemble averages are replaced by temporal averages. Their equivalence assumes 
the satisfaction of the ergodic principle, and requires that proper care is taken 
to avoid spurious effects arising from boundary and initial conditions, truncation 
errors etc. The statistical analysis of the ‘computer experiments’ should be made 
properly. The reliability of the assumed force laws should always be critically ex­
amined for the physical phenomenon in question. One should be aware of the 
dangers of over-interpretation of incomplete or unreliable data, just as in the case 
of real experiments. With those caveats in mind, it is easy to comprehend the enor­
mous possibilities the MD techniques provide in modelling complicated materials 
phenomena and processes, such as sputtering.
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